*** Show each step of your work thoroughly to get a full credit.

1. (8 pts.) Consider the function of two variables:

 \[f(x, y) = \frac{3x - y + 1}{\sqrt{x^2 - 2 + y}}. \]

 Find the domain \(D \) of \(f(x, y) \) and sketch the region \(D \) on \(xy \)-plane.

 \[
 \text{Domain} = D = \{(x, y) \mid x^2 - 2 + y > 0\}
 \]

 Set \(x^2 - 2 + y = 0 \) and draw the graph \(y = -x^2 + 2 \). Choose \((0, 0)\) and see if it satisfies the inequality. Since it doesn't satisfy, it is the region not containing \((0, 0)\).

2. (7 pts.) Consider the function \(f(x, y) = \frac{2xy}{5x^2 + 3y^2} \). Show that \(\lim_{(x, y) \to (0, 0)} f(x, y) \) does not exist.

 Path #1: \(y = 0 \Rightarrow \lim_{x \to 0} \frac{0}{5x^2} = 0 \)

 Path #2: \(x = 0 \Rightarrow \lim_{y \to 0} \frac{0}{3y^2} = 0 \)

 Path #3: \(y = x \Rightarrow \lim_{x \to 0} \frac{2x^2}{5x^2 + 3x^2} = \frac{2}{8} = \frac{1}{4} \)

 Since limit from Path #2 (0) is different from limit from Path #3 (\(\frac{1}{4} \)), limit DNE.